近几年,腾讯优图不断迭代数据和模型缺陷情况下神经网络的有效训练方法,相关技术已经在众多业务场景上(行人重识别,内容审核等)落地。本文整理自腾讯优图、腾讯云大学、AICUG和AI科技评论联合主办的「优Tech沙龙」,分享嘉宾为腾讯优图实验室高级研究员Louis。
01 定义带噪学习目标
现实数据中存在的标签噪音(label noise)根据Feature可以分成两种:Feature independent noise和 Feature dependent noise。Feature independent noise是与特征无关的,比如将一只狗的图片误标记成汽车,狗和汽车没有什么相似特征,所以属于这类。Feature independent noise是与特征有关的,比如说狗和狼具有很多相似特征属性,标注人员可能把狗误标记成狼,那就属于这类。其实现实场景更多存在都是feature dependent noise。
噪音普遍存在,所以我们需要训练神经网络进行带噪学习,并且要能实现比较好的性能。那么noise label learning的目标是设计一个loss function,使得在noisy labels下训练得到的解,在性能上接近在clean labels下训练得到的解。
资料获取 | |
新闻资讯 | |
== 资讯 == | |
» 人形机器人未来3-5年能够实现产业化的方 | |
» 导诊服务机器人上岗门诊大厅 助力医院智慧 | |
» 山东省青岛市政府办公厅发布《数字青岛20 | |
» 关于印发《青海省支持大数据产业发展政策措 | |
» 全屋无主灯智能化规范 | |
» 微波雷达传感技术室内照明应用规范 | |
» 人工智能研发运营体系(ML0ps)实践指 | |
» 四驱四转移动机器人运动模型及应用分析 | |
» 国内细分赛道企业在 AIGC 各应用场景 | |
» 国内科技大厂布局生成式 AI,未来有望借 | |
» AIGC领域相关初创公司及业务场景梳理 | |
» ChatGPT 以 GPT+RLHF 模 | |
» AIGC提升文字 图片渗透率,视频 直播 | |
» AI商业化空间前景广阔应用场景丰富 | |
» AI 内容创作成本大幅降低且耗时更短 优 | |
== 机器人推荐 == | |
服务机器人(迎宾、讲解、导诊...) |
|
消毒机器人排名 导览机器人 |