优酷推荐业务,算法应用场景众多,需求灵活多变,需要一套通用业务框架,支持运行时的算法流程的装配,提升算法服务场景搭建的效率
通过分析其中的关键问题,建立了新热内容曝光敏感模型,并最终给出一种曝光资源约束下的多目标优化保量框架与算法
针对结算收银场景中商品识别的难点,从商品识别落地中的模型选择、数据挑选与标注、前端和云端部署、模型改进等方面,进行了深入讲解
神经形态结构融合学习和记忆功能领域的研究主要集中在人工突触的可塑性方面,同时神经元膜的固有可塑性在神经形态信息处理的实现中也很重要
机器学习就是通过经验来寻找它学习的模式,而人工智能是利用经验来获取知识和技能,并将这些知识应用于新的环境
滴滴机器学习场景下的 k8s 落地实践与二次开发的技术实践与经验,包括平台稳定性、易用性、利用率、平台 k8s 版本升级与二次开发等内容
大型商用时序数据压缩的特性,提出了一种新的算法,分享用深度强化学习进行数据压缩的研究探索
深度学习模型:OverFeat、R-CNN、SPP-Net、Fast、R-CNN、Faster、R-CNN、R-FCN、Mask、R-CNN、YOLO、SSD、YOLOv2、416、DSOD300、R-SSD
SIFT、PCA-SIFT、SURF 、ORB、 VJ 等目标检测算法优缺点对比及使用场合比较
人体姿态估计便是计算机视觉领域现有的热点问题,其主要任务是让机器自动地检测场景中的人“在哪里”和理解人在“干什么”
Adam 算法便以其卓越的性能风靡深度学习领域,该算法通常与同步随机梯度技术相结合,采用数据并行的方式在多台机器上执行
音乐科技、音乐人工智能与计算机听觉以数字音乐和声音为研究对象,是声学、心理学、信号处理、人工智能、多媒体、音乐学及各行业领域知识相结合的重要交叉学科,具有重要的学术研究和产业开发价值