随着深度学习技术近年来快速发展,高效、易用的机器学习平台对于互联网公司愈发重要,一个高效的机器学习平台可以为公司提供更好的人工智能算法研发方面的支持,减少内部重复性、提升资源利用率、提高整体研发效率。
滴滴出行资深软件工程师唐博在机器学习技术分论坛上分享了kubernetes调度系统在滴滴机器学习平台中的落地与二次开发。本次演讲从滴滴机器学习平台的特点开始探讨,分享了滴滴机器学习场景下的 k8s 落地实践与二次开发的技术实践与经验,包括平台稳定性、易用性、利用率、平台 k8s 版本升级与二次开发等内容。此外,唐博还介绍了滴滴机器学习平台是如何从 YARN 迁移到 k8s,以及 YARN 的二次开发与 k8s 的对比等。最后,唐博还分享了滴滴机器学习平台正在研发中的功能以及对未来的展望。本文为演讲实录。
《滴滴机器学习平台kubernetes落地与实践》,大概分四个部分:
一、滴滴机器学习平台简介 ,二、平台调度系统的演进, 三、机器学习场景下的k8s落地实践与二次开发, 四、平台正在开发的功能及未来展望。
机器学习就是通过经验来寻找它学习的模式,而人工智能是利用经验来获取知识和技能,并将这些知识应用于新的环境
神经形态结构融合学习和记忆功能领域的研究主要集中在人工突触的可塑性方面,同时神经元膜的固有可塑性在神经形态信息处理的实现中也很重要
针对结算收银场景中商品识别的难点,从商品识别落地中的模型选择、数据挑选与标注、前端和云端部署、模型改进等方面,进行了深入讲解
通过分析其中的关键问题,建立了新热内容曝光敏感模型,并最终给出一种曝光资源约束下的多目标优化保量框架与算法
优酷推荐业务,算法应用场景众多,需求灵活多变,需要一套通用业务框架,支持运行时的算法流程的装配,提升算法服务场景搭建的效率
饿了么算法专家刘金介绍推荐业务背景,包括推荐产品形态及算法优化目标;然后是算法的演进路线;最后重点介绍在线学习是如何在饿了么推荐领域实践的
杜克大学的一种 AI 算法PULSE可以将模糊、无法识别的人脸图像转换成计算机生成的图像,其细节比之前任何时候都更加精细、逼真
能快速将现有算法在实际生产环境落地,并能利用GPU加速实现大规模计算,我们自己搭建了一个GPU加速的大规模分布式机器学习系统,取名小诸葛
人类可以通过视觉和触觉融合感知快速确定抓取可变形物体所需力的大小,以防止其发生滑动或过度形变,但这对于机器人来说仍然是一个具有挑战性的问题
在底层通过使用基于模型的操作单元,保证了手指与物体之间持续稳定的抓取;在中层使用强化学习进行规划,从而实现较长和复杂的手内操作流程
中科院沈阳自动化所的Wang利用深度强化学习算法和视觉感知相结合的方法来完成移动机器人在非结构环境下的移动操作
德国伯恩大学计算机学院研制的遥操作轮腿复合的移动操作机器人可通过远程操作平台完成各种复杂操作任务