人工智能和机器学习技术正在彻底改变世界,使世界更加先进,但有些人对这两个术语的真正含义感到困惑。有时,在其他情况下它们用作同义词;它们被用作独立或并行的进展。但是,如果你想以有效和有用的方式使用这两者,必须找到两者之间的区别。
如果你也是对这两个词的含义、用途和优势感到困惑的人之一,下面我们将分享人工智能和机器学习之间的关键区别。
我们来看一下:
什么是机器学习?
它是人工智能的一个分支,通过研究计算机算法,让计算机程序通过经验自动改进。例如,如果你向任何机器学习模型提供你喜欢的歌曲列表,以及诸如舞蹈,乐器或节奏等音频静态信息,它将自动执行并生成推荐系统,向你推荐你将来喜欢的druckkings mobile的音乐。
这种类型的机器学习称为监督学习,其算法能够对目标预测输出和输入特征之间的关系和依赖关系进行建模,我们可以通过这些关系预测新数据的输出值。机器学习的另一种类型是无监督学习,这是用于模式检测和描述建模的一系列机器学习算法。
什么是人工智能?
除了机器学习之外,人工智能是完全广泛的,而且范围也有所不同。您可以使用“Artificial”一词来理解,它指的是人为的东西,即非自然的事物,而“Intelligence”指的是理解和思考的能力。大多数人认为人工智能是一个系统,这是不正确的。
它不是一个系统,而是在系统中实现了人工智能。你可以用其他定义来理解人工智能的含义,例如,它是一项对计算机进行训练,让它们完成人类目前可以做得更好的事情的研究。
因此,我们可以说人工智能是一种智能,我们有机会为机器人添加人类所拥有的的所有能力。 人工智能的目的是增加成功的机会,不是提高准确性,模拟自然智能来解决复杂问题,它作为一个智能工作的计算机程序。
结论
现在你知道了人工智能和机器学习的主要区别,我们可以说,机器学习就是通过经验来寻找它学习的模式,而人工智能是利用经验来获取知识和技能,并将这些知识应用于新的环境。之后,为了更好地利用人工智能,许多组织都试图与人工智能分开。
神经形态结构融合学习和记忆功能领域的研究主要集中在人工突触的可塑性方面,同时神经元膜的固有可塑性在神经形态信息处理的实现中也很重要
针对结算收银场景中商品识别的难点,从商品识别落地中的模型选择、数据挑选与标注、前端和云端部署、模型改进等方面,进行了深入讲解
通过分析其中的关键问题,建立了新热内容曝光敏感模型,并最终给出一种曝光资源约束下的多目标优化保量框架与算法
优酷推荐业务,算法应用场景众多,需求灵活多变,需要一套通用业务框架,支持运行时的算法流程的装配,提升算法服务场景搭建的效率
饿了么算法专家刘金介绍推荐业务背景,包括推荐产品形态及算法优化目标;然后是算法的演进路线;最后重点介绍在线学习是如何在饿了么推荐领域实践的
杜克大学的一种 AI 算法PULSE可以将模糊、无法识别的人脸图像转换成计算机生成的图像,其细节比之前任何时候都更加精细、逼真
能快速将现有算法在实际生产环境落地,并能利用GPU加速实现大规模计算,我们自己搭建了一个GPU加速的大规模分布式机器学习系统,取名小诸葛
人类可以通过视觉和触觉融合感知快速确定抓取可变形物体所需力的大小,以防止其发生滑动或过度形变,但这对于机器人来说仍然是一个具有挑战性的问题
在底层通过使用基于模型的操作单元,保证了手指与物体之间持续稳定的抓取;在中层使用强化学习进行规划,从而实现较长和复杂的手内操作流程
中科院沈阳自动化所的Wang利用深度强化学习算法和视觉感知相结合的方法来完成移动机器人在非结构环境下的移动操作
德国伯恩大学计算机学院研制的遥操作轮腿复合的移动操作机器人可通过远程操作平台完成各种复杂操作任务
假肢腕设计的有效基准能够做3自由度运动,即旋前/旋后、屈伸和桡侧/尺侧偏移,未受影响的腕关节,其最大活动范围通常在76度/85度