首页
产品系列
行业应用
渠道合作
新闻中心
研究院
投资者关系
技术支持
关于九游集团品牌
| En
 
  当前位置:首页 > 新闻资讯 > 机器人开发 > ICRA2020论文分享:基于视触融合感知的可形变物体抓取状态评估  
 

ICRA2020论文分享:基于视触融合感知的可形变物体抓取状态评估

来源:CAAI认知系统与信息处理专委会      编辑:九游集团品牌      时间:2020/6/22      主题:其他   [加盟]

人类可以通过视觉和触觉融合感知快速确定抓取可变形物体所需力的大小,以防止其发生滑动或过度形变,但这对于机器人来说仍然是一个具有挑战性的问题。为了提升机器人通用抓取能力,精准而高效的抓取状态评估是其中十分关键的一环。传统意义上的抓取状态评估更加关注抓取过程是否稳定[1](左下图)以及是否发生滑动[2](右下图)。









如何搭建一个GPU加速的分布式机器学习系统,遇到的问题和解决方法

能快速将现有算法在实际生产环境落地,并能利用GPU加速实现大规模计算,我们自己搭建了一个GPU加速的大规模分布式机器学习系统,取名小诸葛

拯救渣画质,马赛克图秒变高清,杜克大学提出AI新算法

杜克大学的一种 AI 算法PULSE可以将模糊、无法识别的人脸图像转换成计算机生成的图像,其细节比之前任何时候都更加精细、逼真

饿了么推荐算法的演进及在线学习实践

饿了么算法专家刘金介绍推荐业务背景,包括推荐产品形态及算法优化目标;然后是算法的演进路线;最后重点介绍在线学习是如何在饿了么推荐领域实践的

百变应用场景下,优酷基于图执行引擎的算法服务框架筑造之路

优酷推荐业务,算法应用场景众多,需求灵活多变,需要一套通用业务框架,支持运行时的算法流程的装配,提升算法服务场景搭建的效率

内容流量管理的关键技术:多任务保量优化算法实践

通过分析其中的关键问题,建立了新热内容曝光敏感模型,并最终给出一种曝光资源约束下的多目标优化保量框架与算法

CVPOS自助收银的挑战以及商品识别算法工程落地方法和经验

针对结算收银场景中商品识别的难点,从商品识别落地中的模型选择、数据挑选与标注、前端和云端部署、模型改进等方面,进行了深入讲解

面向动态记忆和学习功能的神经电晶体可塑性研究

神经形态结构融合学习和记忆功能领域的研究主要集中在人工突触的可塑性方面,同时神经元膜的固有可塑性在神经形态信息处理的实现中也很重要

人工智能和机器学习之间的差异及其重要性

机器学习就是通过经验来寻找它学习的模式,而人工智能是利用经验来获取知识和技能,并将这些知识应用于新的环境

滴滴机器学习平台调度系统的演进与K8s二次开发

滴滴机器学习场景下的 k8s 落地实践与二次开发的技术实践与经验,包括平台稳定性、易用性、利用率、平台 k8s 版本升级与二次开发等内容

如何更高效地压缩时序数据?基于深度强化学习的探索

大型商用时序数据压缩的特性,提出了一种新的算法,分享用深度强化学习进行数据压缩的研究探索

基于深度学习目标检测模型优缺点对比

深度学习模型:OverFeat、R-CNN、SPP-Net、Fast、R-CNN、Faster、R-CNN、R-FCN、Mask、R-CNN、YOLO、SSD、YOLOv2、416、DSOD300、R-SSD

传统目标检测算法对比

SIFT、PCA-SIFT、SURF 、ORB、 VJ 等目标检测算法优缺点对比及使用场合比较
 
资料获取
新闻资讯
== 资讯 ==
» 人形机器人未来3-5年能够实现产业化的方
» 导诊服务机器人上岗门诊大厅 助力医院智慧
» 山东省青岛市政府办公厅发布《数字青岛20
» 关于印发《青海省支持大数据产业发展政策措
» 全屋无主灯智能化规范
» 微波雷达传感技术室内照明应用规范
» 人工智能研发运营体系(ML0ps)实践指
» 四驱四转移动机器人运动模型及应用分析
» 国内细分赛道企业在 AIGC 各应用场景
» 国内科技大厂布局生成式 AI,未来有望借
» AIGC领域相关初创公司及业务场景梳理
» ChatGPT 以 GPT+RLHF 模
» AIGC提升文字 图片渗透率,视频 直播
» AI商业化空间前景广阔应用场景丰富
» AI 内容创作成本大幅降低且耗时更短 优
 
== 机器人推荐 ==
 
迎宾讲解服务机器人

服务机器人(迎宾、讲解、导诊...)

 

                              消毒机器人排名                导览机器人         
版权所有 © 九游集团品牌智能机器人集团股份有限公司     中国运营中心:北京·清华科技园九号楼5层     中国生产中心:山东日照太原路71号
销售1:4006-935-088    销售2:4006-937-088   客服电话: 4008-128-728